LifeV
lifev/eta/tutorials/10_ETA_QR_Advanced/main.cpp File Reference

Advanced tutorial about the quadrature in the ETA. More...

#include <Epetra_ConfigDefs.h>
#include <Epetra_SerialComm.h>
#include <lifev/core/LifeV.hpp>
#include <lifev/core/mesh/MeshPartitioner.hpp>
#include <lifev/core/mesh/RegionMesh3DStructured.hpp>
#include <lifev/core/mesh/RegionMesh.hpp>
#include <lifev/core/array/MatrixEpetra.hpp>
#include <lifev/eta/fem/ETFESpace.hpp>
#include <lifev/eta/expression/Integrate.hpp>
#include <lifev/eta/fem/QRAdapterBase.hpp>
#include <boost/shared_ptr.hpp>
#include <cstdlib>
+ Include dependency graph for lifev/eta/tutorials/10_ETA_QR_Advanced/main.cpp:

Go to the source code of this file.

Data Structures

class  MCQuadrature< MeshType >
 
class  fFunctor
 

Typedefs

typedef RegionMesh< LinearTetramesh_Type
 
typedef MatrixEpetra< Realmatrix_Type
 

Functions

int main (int argc, char **argv)
 

Detailed Description

Advanced tutorial about the quadrature in the ETA.

Author
Samuel Quinodoz samue.nosp@m.l.qu.nosp@m.inodo.nosp@m.z@ep.nosp@m.fl.ch
Date
08-08-2012

This tutorial shows an advanced feature of the ETA framework: adaptative quadratures.

Indeed, the ETA framework allows the user to define different ways to integrate, that have possibly not been forseen before, without having to enter the whole machinery.

In this tutorial, we show how to create an "adaptative" quadrature rule which consists in a standard quadrature rule excepted for some precise elements where the integral is known to be discontinuous. In the elements crossed by this discontinuity, we implement a Monte-Carlo type integral (which is probably not the best way to compute the integral, but for this example, this is fine).

Please, read tutorial 1, 3, 6 and 9 before reading this tutorial.

Definition in file lifev/eta/tutorials/10_ETA_QR_Advanced/main.cpp.

Typedef Documentation

◆ mesh_Type

◆ matrix_Type

Function Documentation

◆ main()

int main ( int  argc,
char **  argv 
)