LifeV
Boundary_methods

Methods

Real measure (const markerID_Type &flag)
 
template<typename VectorType >
Real flux (const VectorType &vectorField, const markerID_Type &flag, UInt feSpace=0, UInt nDim=nDimensions)
 
template<typename VectorType >
Real kineticNormalStress (const VectorType &velocity, const Real &density, const markerID_Type &flag, UInt feSpace=0, UInt nDim=nDimensions)
 
template<typename VectorType >
Real kineticNormalStressDerivative (const VectorType &velocity, const VectorType &velocityDerivative, const Real &density, const markerID_Type &flag, UInt feSpace=0, UInt nDim=nDimensions)
 
template<typename VectorType >
Vector average (const VectorType &field, const markerID_Type &flag, UInt feSpace=0, UInt nDim=1)
 
Vector normal (const markerID_Type &flag, UInt feSpace=0, UInt nDim=nDimensions)
 
Vector geometricCenter (const markerID_Type &flag, UInt feSpace=0, UInt nDim=nDimensions)
 
void showDOFIndexMap (std::ostream &output=std::cout) const
 
void showPatchesMeasure (std::ostream &output=std::cout) const
 
void showPatchesNormal (std::ostream &output=std::cout) const
 
void showPatchesPhi (std::ostream &output=std::cout) const
 
const VectorpatchMeasureInFESpace (const UInt &feSpace=0) const
 
const VectorpatchNormalInFESpace (const UInt &feSpace=0) const
 
const std::vector< ID > & dofGlobalIdInFESpace (const UInt &feSpace=0) const
 
const UIntnumBoundaryDofInFESpace (const UInt &feSpace=0) const
 Number of boundary DOF for the mesh at hand. More...
 

Detailed Description

These methods compute quantities on boundary sections associated to a given flag

Function Documentation

◆ measure()

Real measure ( const markerID_Type flag)

This method computes the measure of boundary section "flag"

Parameters
flagis the marker of the considered boundary section

Definition at line 701 of file PostProcessingBoundary.hpp.

◆ flux()

Real flux ( const VectorType &  vectorField,
const markerID_Type flag,
UInt  feSpace = 0,
UInt  nDim = nDimensions 
)

This method computes the flux of vectorField across boundary section "flag"

Template Parameters
VectorTypeVector type. Basic policy for type VectorType: operator[] available
Parameters
vectorFieldis intended to be a vector field
flagis the marker of the considered boundary section
feSpaceis the identifier of the desired FE Space in M_feSpaceVector
nDimis the dimension of vectorField

Definition at line 732 of file PostProcessingBoundary.hpp.

◆ kineticNormalStress()

Real kineticNormalStress ( const VectorType &  velocity,
const Real density,
const markerID_Type flag,
UInt  feSpace = 0,
UInt  nDim = nDimensions 
)

Compute the kinetic normal stress (i.e., the normal stress due to the kinetic energy) on a boundary face.

See also
[2] [15]

This method computes the following quantity:

\[ \mathcal{K} = \frac{1}{2}\rho_\textrm{F}\frac{1}{\left|\Gamma^t_{\textrm{F},j}\right|}\displaystyle\int_{\Gamma^t_{\textrm{F},j}}\left({\mathbf{u}}_\textrm{F} \mathbf{\cdot} {\mathbf{n}}_\textrm{F}\right)^2 \textrm{d} \Gamma \]

Parameters
velocityvelocity
densitydensity of the fluid
flagthe flag of the boundary face
feSpacethe FE space
nDimthe dimension size
Returns
the kinetic normal stress

Definition at line 795 of file PostProcessingBoundary.hpp.

◆ kineticNormalStressDerivative()

Real kineticNormalStressDerivative ( const VectorType &  velocity,
const VectorType &  velocityDerivative,
const Real density,
const markerID_Type flag,
UInt  feSpace = 0,
UInt  nDim = nDimensions 
)

Compute the derivative of the kinetic normal stress (i.e., the derivative of the normal stress due to the kinetic energy) on a boundary face.

See also
[2] [15]

This method computes the following quantity:

\[ \begin{array}{r@{\,\,}c@{\,\,}l@{\qquad}l} \textrm{D}\mathcal{K} &=&\displaystyle\frac{1}{2}\rho_\textrm{F} \displaystyle\frac{1}{{\left|\Gamma^t_{\textrm{F},j_1}\right|}^2} \left(\displaystyle\int_{\Gamma^t_{\textrm{F},j_1}}{\mathbf\nabla}_\Gamma \mathbf \cdot \delta {\mathbf d}_\textrm{F} \textrm{d} \Gamma\right) \left(\displaystyle\int_{\Gamma^t_{\textrm{F},j_1}}{\left({\mathbf u}_\textrm{F} \mathbf \cdot {\mathbf n}_\textrm{F}\right)}^2 \textrm{d} \Gamma \right) \\[4ex] &-&\displaystyle\frac{1}{2}\rho_\textrm{F}\displaystyle\frac{1}{\left|\Gamma^t_{\textrm{F},j_1}\right|} \left(\displaystyle\int_{\Gamma^t_{\textrm{F},j_1}}2({\mathbf u}_\textrm{F}\mathbf \cdot {\mathbf n}_\textrm{F})\left(\delta {\mathbf u}_\textrm{F} \mathbf \cdot {\mathbf n}_\textrm{F}\right) \textrm{d} \Gamma +\displaystyle\int_{\Gamma^t_{\textrm{F},j_1}}\left({\mathbf\nabla}_\Gamma \mathbf \cdot \delta {\mathbf d}_\textrm{F}\right)\left({\mathbf u}_\textrm{F} \mathbf \cdot {\mathbf n}_\textrm{F}\right)^2 \textrm{d} \Gamma \right) \end{array} \]

Parameters
velocityvelocity
velocityDerivativevelocity derivative
densitydensity of the fluid
flagthe flag of the boundary face
feSpacethe FE space
nDimthe dimension size
Returns
the kinetic normal stress derivative

Definition at line 852 of file PostProcessingBoundary.hpp.

◆ average()

Vector average ( const VectorType &  field,
const markerID_Type flag,
UInt  feSpace = 0,
UInt  nDim = 1 
)

This method computes the average value of a field on the boundary section "flag"

Template Parameters
VectorTypeVector type. Basic policy for type VectorType: operator[] available
Parameters
fieldis intended to be a vector or a scalar (pressure in NS problem), this method computes the average value of field on section "flag"
Returns
the averaged vector

Definition at line 920 of file PostProcessingBoundary.hpp.

◆ normal()

Vector normal ( const markerID_Type flag,
UInt  feSpace = 0,
UInt  nDim = nDimensions 
)

This method computes an approximate normal vector on the boundary section "flag"

Returns
the approximate normal vector

Definition at line 1007 of file PostProcessingBoundary.hpp.

◆ geometricCenter()

Vector geometricCenter ( const markerID_Type flag,
UInt  feSpace = 0,
UInt  nDim = nDimensions 
)

Compute the geometric center of a boundary face.

This method computes the geometric center of a boundary section "flag"

Parameters
flagthe flag of the boundary face
feSpacethe FE space
nDimthe dimension size
Returns
the vector containing the x-y-z coordinates of the geometric center

Definition at line 1073 of file PostProcessingBoundary.hpp.

◆ showDOFIndexMap()

void showDOFIndexMap ( std::ostream &  output = std::cout) const

These methods print to screen information about the class data structures

Definition at line 1190 of file PostProcessingBoundary.hpp.

◆ showPatchesMeasure()

void showPatchesMeasure ( std::ostream &  output = std::cout) const

Definition at line 1169 of file PostProcessingBoundary.hpp.

◆ showPatchesNormal()

void showPatchesNormal ( std::ostream &  output = std::cout) const

Definition at line 1282 of file PostProcessingBoundary.hpp.

◆ showPatchesPhi()

void showPatchesPhi ( std::ostream &  output = std::cout) const

Definition at line 1357 of file PostProcessingBoundary.hpp.

◆ patchMeasureInFESpace()

const Vector& patchMeasureInFESpace ( const UInt feSpace = 0) const
inline

Access to private members

Definition at line 310 of file PostProcessingBoundary.hpp.

◆ patchNormalInFESpace()

const Vector& patchNormalInFESpace ( const UInt feSpace = 0) const
inline

Definition at line 315 of file PostProcessingBoundary.hpp.

◆ dofGlobalIdInFESpace()

const std::vector< ID >& dofGlobalIdInFESpace ( const UInt feSpace = 0) const
inline

Definition at line 320 of file PostProcessingBoundary.hpp.

◆ numBoundaryDofInFESpace()

const UInt& numBoundaryDofInFESpace ( const UInt feSpace = 0) const
inline

Number of boundary DOF for the mesh at hand.

Definition at line 326 of file PostProcessingBoundary.hpp.