![]() |
LifeV
|
M. Astorino, F. Chouly, and M. A. Fernández. Robin based semi-implicit coupling in fluid-structure interaction: Stability analysis and numerics. To appear, 2009.
S. Anicic, H. Le Dret, and A. Raoult. Lemme du mouvement rigide infinitésimal en coordonnées lipschitziennes et application aux coques de régularité minimale. C. R. Math. Acad. Sci. Paris, 336(4):365-370, 2003.
S. Anicic and A. Léger. Formulation bidimensionnelle exacte du modèle de coque 3D de Kirchhoff-Love. C. R. Acad. Sci. Paris Sér. I Math., 329(8):741-746, 1999.
S. Anicic. Mesure des variations infinitésimales des courbures principales d'une surface. C. R. Math. Acad. Sci. Paris, 335(3):301-306, 2002.
Owe Axelsson. Iterative solution methods. Cambridge University Press, New York, NY, USA, 1994.
A. T. Barker and X. C. Cai. NKS for fully coupled fluid-structure interaction with application. Lect. Notes Comput. Sci. Eng. Springer, Berlin.
Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang. Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput. Mech., 43(1):3-37, 2008.
Hugo Beirão da Veiga. On the existence of strong solutions to a coupled fluid-structure evolution problem. J.Math.Fluid.Mechanics, 21-52, 2004.
Erik Burman and Miguel A. Fernández. Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility. Comput. Methods Appl. Mech. Engrg., 198(5-8):766-784, 2009.
Santiago Badia, Fabio Nobile, and Christian Vergara. Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys., 227(14):7027-7051, 2008.
Santiago Badia, Annalisa Quaini, and Alfio Quarteroni. Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect. Comput. Methods Appl. Mech. Engrg., 197(49-50):4216-4232, 2008.
Santiago Badia, Annalisa Quaini, and Alfio Quarteroni. Splitting methods based on algebraic factorization for fluid-structure interaction. SIAM J. Sci. Comput., 30(4):1778-1805, 2008.
D. Chapelle and K.J. Bathe. The Finite Element Analysis of Shells - Fundamentals. Springer, New York, 2003.
Paolo Crosetto, Simone Deparis, Gilles Fourestey, and Alfio Quarteroni. Parallel solvers and preconditioners for fluid-structure interaction problems arising in haemodynamics. In preparation.
P. Causin, J.-F. Gerbeau, and F. Nobile. Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Engrg., 194(42-44):4506 - 4527, 2005. [ DOI | www: ]
<font size="-1"> Keywords: Fluid-structure interaction </font>
Georges-Henri Cottet, Emmanuel Maitre, and Thomas Milcent. Eulerian formulation and level set models for incompressible fluid-structure interaction. M2AN Math. Model. Numer. Anal., 42(3):471-492, 2008.
S. Canic, A. Mikelic, and J. Tambaca. A two-dimensional effective model describing fluid-structure interaction in blood flow: analysis, simulation and experimental validation. Special Issue of Comptes Rendus Mechanique Acad. Sci. Paris, 2004.
D. Chapelle, D.L. Oliveira, and M.L. Bucalem. MITC elements for classical shell model. Computers and Structures, 81:523-533, 2003.
Joris Degroote, Klaus-Jürgen Bathe, and Jan Vierendeels. Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Computers and Structures, 87(11-12):793 - 801, 2009. Fifth MIT Conference on Computational Fluid and Solid Mechanics. [ DOI | www: ]
<font size="-1"> Keywords: Fluid-structure interaction </font>
M.L. Bucalem D. Chapelle, D.L. Oliveira. An evaluation of the mitc shell elements. Computers and Structures, 75:1-30, 2000.
Simone Deparis, Marco Discacciati, Gilles Fourestey, and Alfio Quarteroni. Fluid-structure algorithms based on Steklov-Poincaré operators. Comput. Methods Appl. Mech. Engrg., 195(41-43):5797-5812, 2006.
Simone Deparis, Marco Discacciati, Gilles Fourestey, and Alfio Quarteroni. Heterogeneous domain decomposition methods for fluid-structure interaction problems. In Domain decomposition methods in science and engineering XVI, volume 55 of Lect. Notes Comput. Sci. Eng., pages 41-52. Springer, Berlin, 2007.
Simone Deparis, Marco Discacciati, and Alfio Quarteroni. A domain decomposition framework for fluid-structure interaction problems. In Proceedings of the Third International Conference on Computational Fluid Dynamics (ICCFD3), pages 41-58, 2006.
<font size="-1"> Keywords: Fluid-structure interaction; domain decomposition; finite element approximation; blood flow </font>
B. Desjardins and M. J. Esteban. Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal., 146(1):59-71, 1999.
B. Desjardins and M. J. Esteban. On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. Partial Differential Equations, 25(7-8):1399-1413, 2000.
B. Desjardins, M. J. Esteban, C. Grandmont, and P. Le Tallec. Weak solutions for a fluid-elastic structure interaction model. Rev. Mat. Complut., 14(2):523-538, 2001.
Simone Deparis. Numerical analysis of axisymmetric flows and methods for fluid-structure interaction arising in blood flow simulation. PhD thesis, Lausanne, 2004. [ http | http ]
Simone Deparis, Miguel Angel Fernández, and Luca Formaggia. Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions. M2AN Math. Model. Numer. Anal., 37(4):601-616, 2003.
W. G. Dettmer and D. Perić. A fully implicit computational strategy for strongly coupled fluid-solid interaction. Arch. Comput. Methods Eng., 14(3):205-247, 2007.
Miguel Angel Fernández. Modèles Simplifiés d'Interaction Fluide-Structure. PhD thesis, Universitée de Paris IX, France, 2001.
T. Fanion, M.A. Fernández, and P. Le Tallec. Deriving adequate formulations for fluide structure interaction problems: from ale to transpiration. Rév. Européenne Élém. Finis, 9(6-7):681-708, 2000.
M. A. Fernández, J.-F. Gerbeau, and C. Grandmont. A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Internat. J. Numer. Methods Engrg., 69(4):794-821, 2007.
Charbel Farhat and Michael Lesoinne. Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput. Methods Appl. Mech. Engrg., 182:499-515, 2000.
Y. C. Fung. An introduction to the theory of aeroelasticity. John Wiley & Sons Inc., New York, 1955.
Jean-Frédéric Gerbeau. A quasi-Newton method for a fluid-structure problem arising in blood flows. In K.J. Bathe, editor, Proceedings of the second M.I.T. Conference on Computational Fluid and Solid Mechanics, pages 1355-1357. Elsevier, 2003.
C. Grandmont, V. Guimet, and Y. Maday. Numerical analysis of some decoupling techniques for the approximation of the unsteady fluid structure interaction. Math. Models Methods Appl. Sci., 11(8):1349-1377, 2001.
Céline Grandmont and Yvon Maday. Analyse et méthodes numériques pour la simulation de phénomènes d'interaction fluide-structure. In Actes du 29ème Congrès d'Analyse Numérique: CANum'97 (Larnas, 1997), volume 3 of ESAIM Proc., pages 101-117 (electronic). Soc. Math. Appl. Indust., Paris, 1998.
Céline Grandmont and Yvon Maday. Existence de solutions d'un problème de couplage fluide-structure bidimensionnel instationnarie. C. R. Acad. Sci. Paris Sér. I Math., 326(4):525-530, 1998.
Céline Grandmont and Yvon Maday. Nonconforming grids for the simulation of fluid-structure interaction. In Domain decomposition methods, 10 (Boulder, CO, 1997), volume 218 of Contemp. Math., pages 262-270. Amer. Math. Soc., Providence, RI, 1998.
Céline Grandmont and Yvon Maday. Existence for an unsteady fluid-structure interaction problem. M2AN Math. Model. Numer. Anal., 34(3):609-636, 2000.
C. Grandmont and Y. Maday. Fluid structure interaction: A theoretical point of view. submitted to Revue Européenne des éléments finis, 2001.
C. Grandmont, Y. Maday, and V. Guimet. Results about some decoupling techniques for the approximation of the unsteady fluid-structure interaction. In ENUMATH 97 (Heidelberg), pages 319-326. World Sci. Publishing, River Edge, NJ, 1998.
Céline Grandmont. Analyse mathématique et numérique de quelques problèmes d'interaction fluide-structure. PhD thesis, Univ. Paris 6, 1998.
Céline Grandmont. Existence et unicité de solutions d'un problème de couplage fluide-structure bidimensionnel stationnaire. C. R. Acad. Sci. Paris Sér. I Math., 326(5):651-656, 1998.
Céline Grandmont. Existence for a three-dimensional steady state fluid-structure interaction problem. J. Math. Fluid Mech., 4(1):76-94, 2002.
J.F. Gerbeau and M. Vidrascu. A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. M2AN, 37(4):663-680, 2003.
J.-F. Gerbeau, V. Vidrascu, and P. Frey. Fluid-structure interaction in blood flows on geometries coming from medical imaging. Comp. and Struct., 83:155-165, 2005.
Matthias Heil. An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Comput. Methods Appl. Mech. Engrg., 193(1-2):1-23, 2004.
Matthias Heil, Andrew L. Hazel, and Jonathan Boyle. Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Computational Mechanics, 43(1):91-101, 21 2008.
W.P. Huffman, R.G. Melvin, D.P. Young, F.T. Johnson, J.E. Bussoletti, M.B. Bieterman, and C.L. Hilmes. Practical design and optimisation in computational fluids dynamics. In proceedigns of the AIAA 24th Fluid Dynamics Conference. Orlando, Florida, 1993.
Björn Hübner, Elmar Walhorn, and Dieter Dinkler. A monolithic approach to fluid-structure interaction using space-time finite elements. Computer Methods in Applied Mechanics and Engineering, 193(23-26):2087 - 2104, 2004. [ DOI | www: ]
<font size="-1"> Keywords: Fluid-structure interaction </font>
Bruce Irons and Robert Tuck. A version of the Aitken accelerator for computer iteration. Int. J. Numer. Methods Eng., 1:275-277, 1969.
U. Küttler, M. Gee, Ch Förster, A. Comerford, and W. A. Wall. Coupling strategies for biomedical fluid-structure interaction problems. Commun. Numer. Meth. Engng., 2009.
U. Küttler and W. A. Wall. Fixed-point fluid structure interaction solvers with dynamic relaxation. Computational Mechanics, 43:61-72, December 2008.
<font size="-1"> Keywords: Fluidndash, structure interaction, Fixed-point solver, Dirichletndash, Neumman partitioning, Strong coupling </font>
Ulrich Küttler and Wolfgang A. Wall. The dilemma of domain decomposition approaches in fluid-structure interactions with fully enclosed incompressible fluids. In Domain decomposition methods in science and engineering XVII, volume 60 of Lect. Notes Comput. Sci. Eng., pages 575-582. Springer, Berlin, 2008.
94 P. Le Tallec. Numerical methods for nonlinear three-dimensional elasticity. In Handbook of Numerical Analysis, Vol. III, pages 465-622. North-Holland, Amsterdam, 1994.
M.J. Lighthill. On displacement thickness. J. Comput. Phys., 4:383-392, 1958.
G. Medic. Étude mathématique des modèles aux tensions de Reynolds et simulation numérique d'écoulements turbulents sur parois fixes et mobiles. PhD thesis, University of Paris VI, France, 1999.
C. Michler, S. J. Hulshoff, E. H. van Brummelen, and R. de Borst. A monolithic approach to fluid-structure interaction. Computers and Fluids, 33(5-6):839 - 848, 2004. Applied Mathematics for Industrial Flow Problems. [ DOI | http ]
Hermann G. Matthies, Rainer Niekamp, and Jan Steindorf. Algorithms for strong coupling procedures. Comput. Methods Appl. Mech. Engrg., 195(17-18):2028-2049, 2006.
Marwan Moubachir. Mathematical and Numerical Analysis of Inverse and Control Problems for Fluid-Structure Interaction Systems. PhD thesis, École Nationale des Ponts et Chaussées, France, 2002.
D. P. Mok and W. A. Wall. Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures. In K. Schweizerhof and W.A. Wall, editors, Trends in Computational Structural Mechanics. K.U. Bletzinger, CIMNE, Barcelona, 2001.
D. P. Mok, W. A. Wall, and E. Ramm. Accelerated iterative substructuring schemes for instationary fluid-structure interaction. In K.J. Bathe, editor, Computational Fluid and Solid Mechanics, pages 1325-1328. Elsevier, 2001.
Wilmer W. Nichols and Michael F. O'Rourke. McDonald's Blood Flow in Arteries Theoretical, experimental, and clinical principles. Arnold, 1998. With a contribution from Craig Hartley.
F. Nobile. Numerical Approximation of Fluid-Structure Interaction Problems with Application to Haemodynamics. PhD thesis, École Polytechnique Fédérale de Lausanne, 2001.
F. Nobile and C. Vergara. An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput., 30(2):731-763, 2008.
Serge Piperno, Charbel Farhat, and Bernard Larrouturou. Partitioned procedures for the transient solution of coupled aeroelastic problems. Comput. Methods Appl. Mech. Engrg., 124(1-2):79-112, 1995.
J. Mouro P. Le Tallec. Fluid structure interaction with large structural displacements. Comput. Methods Appl. Mech. Engrg, 190:3039-3067, 2001.
Micol Pennacchio and Valeria Simoncini. Algebraic multigrid preconditioners for the bidomain reaction-diffusion system. Submitted, 2009.
A. Quaini and A. Quarteroni. A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method. Math. Models Methods Appl. Sci., 17(6):957-983, 2007.
J.Y. Renou. Une méthode eulérienne pour le calcul de forces fluide-élastiques. PhD thesis, University of Paris VI, France, 1998.
P. Raj and B. Harri. Using surface transpiration with an euler method for cost-effective aerodynamic analysis. In proceedigns of the AIAA 24th Fluid Dynamics Conference. Monterey, Canada, 1993.
P. Le Tallec. Introduction à la Dynamique des Structures. Ellipse, Paris, 2000.
Tayfun E. Tezduyar, Sunil Sathe, and Keith Stein. Solution techniques for the fully discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput. Methods Appl. Mech. Engrg., 195(41-43):5743-5753, 2006.
Hongwu Wang, Jack Chessa, Wing K. Liu, and Ted Belytschko. The immersed/fictitious element method for fluid-structure interaction: volumetric consistency, compressibility and thin members. Internat. J. Numer. Methods Engrg., 74(1):32-55, 2008.